Winter 2018, Math 148: Week 2 Problem Set
 Due: Wednesday, January 24th, 2018
 Groups, Rings, and Fields

Discussion problems. The problems below should be completed in class.
(D1) Rings of functions. Determine which of the following sets $(R,+, \cdot)$ forms a ring under the given addition and multiplication. For each set R that is indeed a ring, determine whether R is a field.
(a) The set $R=\{\ldots,-2,0,2, \ldots\} \subset \mathbb{Z}$ of even integers, under the usual addition and multiplication of integers.
(b) The set $R=\left\{r_{n} x^{n}+\cdots+r_{1} x+r_{0}: r_{i} \in \mathbb{R}\right\}$ of polynomials in a variable x with real coefficients, under the usual addition and multiplication of polynomials.
(c) The subset of R from part (b) consisting of those polynomials with degree at most d.
(d) The set $R=\{f(x) / g(x): f(x), g(x)$ polynomials, $g \neq 0\}$ of rational functions under the usual addition and multiplication of fractions. Here, cancelling common factors in the numerator and denominator yields the same element of R. For example,

$$
\frac{x^{2}+5}{x} \cdot \frac{2 x}{x+1}=\frac{2 x\left(x^{2}+5\right)}{x(x+1)}=\frac{2 x^{2}+10}{x+1}
$$

(e) The subset of R in part (d) whose denominator takes only positive values over \mathbb{R}.
(f) The set $R=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ continuous $\}$ of continuous real-valued functions on \mathbb{R}, under the usual addition and multiplication of functions, e.g. $e^{x} \cdot \sin (x)=e^{x} \sin (x)$.
(g) The set $R=\mathbb{R} \cup\{\infty\}$ of real numbers together with infinity, and operations (R, \oplus, \odot), where $a \oplus b=\min (a, b)$ and $a \odot b=a+b$.
(D2) Zero divisors. A nonzero ring element $r \in R$ is called a zero divisor if there exists a nonzero element $r^{\prime} \in R$ with $r \cdot r^{\prime}=0$.
(a) For which n does the ring \mathbb{Z}_{n} have zero divisors?
(b) Give an example of a ring with no zero divisors that is not a field.
(c) Which rings from problem (D1) have zero divisors?
(D3) Cartesian products. The Cartesian product of two rings R_{1} and R_{2} is the set

$$
R_{1} \times R_{2}=\left\{(a, b): a \in R_{1}, b \in R_{2}\right\}
$$

with addition $(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)$ and multiplication $(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a \cdot a^{\prime}, b \cdot b^{\prime}\right)$ performed componentwise.
(a) How many elements does $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$ have? What about $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$?
(b) Is $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ ever a field?
(c) Under what conditions on m and n is the group $\left(\mathbb{Z}_{n} \times \mathbb{Z}_{m},+\right)$ cyclic?
(d) The order of an element $a \in R$ is the smallest integer k such that adding a to itself k times yields 0 (or, written more compactly, $k a=0$).
(i) Which elements of $\mathbb{Z}_{5} \times \mathbb{Z}_{3}$ have highest order? What about $\mathbb{Z}_{6} \times \mathbb{Z}_{4}$? $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$?
(ii) Express the order of $(a, b) \in R_{1} \times R_{2}$ in terms of the orders of $a \in R_{1}$ and $b \in R_{2}$.

Required problems. As the name suggests, you must submit all required problem with this homework set in order to receive full credit.
(R1) Give the operation tables for all possible Abelian groups with exactly 4 elements $\{e, a, b, c\}$, where e is the identity element. Argue that there are no more. Which one is \mathbb{Z}_{4} ?
(R2) Provide a short proof for each of the following statements (here, "short" means that a complete, thorough proof will likely be only a couple of lines).
(a) The group $\left(\mathbb{Z}_{13} \backslash\{0\}, \cdot\right)$ is cyclic.
(b) Fix a field F. The set $F \backslash\{0\}$ forms a group under multiplication. Is the same true if F is a ring but not a field?
(c) Fix a ring R. If $r \in R$ is a zero-divisor, then it is not invertible.
(d) If x and y are each invertible in a ring R, then $x y$ and x^{-1} (meaning the multiplicative inverse of x) are invertible in R.

Selection problems. You are required to submit all parts of one selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.
(S1) Fix two rings R_{1} and R_{2}.
(a) Characterize the units of $R_{1} \times R_{2}$ in terms of the units of R_{1} and R_{2}.
(b) Characterize the zero divisors of $R_{1} \times R_{2}$ in terms of the zero divisors of R_{1} and R_{2}.
(S2) The characteristic of a ring R is the smallest number m such that for any $r \in R$, adding r to itself m times yields 0 . If no such m exists, we say R has characteristic 0 .
(a) Express the characteristic of R in terms of the orders of its elements.
(b) Prove that the order of each ring element $r \in R$ divides the characteristic of R.
(c) Find the characteristic of $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ in terms of m and n.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Give an example of a ring in which the set of non-unit elements is closed under both addition and multiplication.

