Winter 2018, Math 148: Week 3 Problem Set
 Due: Friday, February 2nd, 2018
 Factorization in Polynomial Rings

Discussion problems. The problems below should be completed in class.
(D1) The polynomial ring $\mathbb{Z}_{n}[x]$.
(a) Can you find a unit in $\mathbb{Z}_{4}[x]$ with positive degree?
(b) Which elements of $\mathbb{Z}_{3}[x]$ are units? For which n does this hold?
(c) For which n does $\mathbb{Z}_{n}[x]$ have zero-divisors?
(d) What is the highest degree a zero-divisor can have in $\mathbb{Z}_{6}[x]$? How about $\mathbb{Z}_{n}[x]$?
(e) Which elements of $\mathbb{Z}_{4}[x]$ are zero-divisors?
(f) Use the Euclidean algorithm to find the greatest common divisor of

$$
f(x)=x^{3}+3 x^{2}+2 x-1 \quad \text { and } \quad g(x)=x^{3}-2 x+1
$$

in $\mathbb{Q}[x]$. Do the same in $\mathbb{Z}_{5}[x]$. How do you reconcile these differences?
(g) In view of part (f), what is the relationship in general between the greatest common divisor of two polynomials when computed over \mathbb{Z}_{p} (for p prime) vs. over \mathbb{Q} ?
(h) Find the common divisor of $2 x$ and $4 x$ over \mathbb{Z}_{6} of highest degree.
(D2) Factoring polynomials over \mathbb{Z}_{n}.
(a) Find all roots of $3 x+3=0$ over \mathbb{Z}_{6}. Why is this surprising?
(b) Find a linear (i.e. degree 1) polynomial over \mathbb{Z}_{6} with no solutions.
(c) Consider the polynomial $f(x)=x^{2}-x=(x)(x-1)$ over \mathbb{Z}_{6}. Find all roots of $f(x)$ and the roots of its factors x and $x-1$. What do you notice?
(d) Find all factorizations of $f(x)=x^{2}-x$ over \mathbb{Z}_{6}.
(e) Factor $x^{3}+3 x+1$ and $x^{3}+3 x^{2}+2 x+4$ over \mathbb{Z}_{5} as a product of irreducibles.
(f) Factor $x^{4}+5$ over \mathbb{Z}_{3}. Does it factor over \mathbb{Q} ?
(g) Factor $x^{4}+4$ over \mathbb{Z}_{5}. Does it factor over \mathbb{Q} ? (The answer may surprise you!)
(h) Factor $x^{5}+1$ over \mathbb{Z}_{3}. Do the same over \mathbb{Z}_{5}. Where have you seen this before?

Required problems. As the name suggests, you must submit all required problem with this homework set in order to receive full credit.
(R1) Consider the polynomials $f(x)=x^{5}+3 x^{4}-7 x^{3}+5 x+4$ and $g(x)=2 x^{2}+x+5$. Divide $f(x)$ by $g(x)$ over \mathbb{Z}_{3}. Do the same over \mathbb{Z}_{11}. Without performing long division, decide whether $g(x)$ divides $f(x)$ over \mathbb{Q}.
(R2) Find the greatest common divisor of $f(x)=x^{6}+x^{4}+x^{2}$ and $g(x)=x^{4}+x^{3}+x$ over \mathbb{Z}_{3}. Would your answer be different over \mathbb{Q} ?
(R3) Factor $f(x)=x^{3}+6 x^{2}+1$ over $\mathbb{Z}_{3}, \mathbb{Z}_{5}$, and \mathbb{Z}_{7}. Does it factor over \mathbb{Q} ?
(R4) Factor $f(x)=x^{5}+4 x^{4}+8 x^{3}+11 x$ over \mathbb{Q}. Hint: first try to factor $f(x)$ over some small finite fields, like \mathbb{Z}_{3} and \mathbb{Z}_{5}.

Selection problems. You are required to submit all parts of one selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.
(S1) Consider the set $R=\left\{a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Q}[x]: a_{0} \in \mathbb{Z}\right\}$ of polynomials over \mathbb{Q} with integer constant term.
(a) Show that R is a ring under the usual addition and multiplication of polynomials.
(b) Show that some elements of R cannot be factored into a finite product of irreducibles. Hint: consider the element $f(x)=x$.
(S2) Consider the set $R=\left\{a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Q}[x]: a_{1}=0\right\}$ of polynomials over \mathbb{Q} with no linear term.
(a) Show that R is a ring under the usual addition and multiplication of polynomials.
(b) Show that there are elements of R that can be factored in more than one distinct way. Hint: consider the element $f(x)=x^{6}$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove that any finite ring with no zero-divisors is a field.

