Winter 2018, Math 148: Week 4 Problem Set Due: Friday, February 9th, 2018 Finite Fields

Discussion problems. The problems below should be completed in class.

- (D1) Finite fields. The goal of this problem is to systematically build "small" finite fields.
 - (a) Suppose $F_3 = \{0, 1, a\}$ is a field with exactly 3 elements. Fill in as much of the addition and multiplication table as you can using only the field axioms.
 - (b) How many entries in your answer to part (a) remain? Which field(s) can F_3 be?
 - (c) Do the same for a field $F_4 = \{0, 1, a, b\}$ with exactly 4 elements.
 - (d) What is the order of each element of F_4 ? What familiar additive group did you obtain? With this in mind, is the multiplication structure what you expected it to be?
 - (e) Suppose F_6 is a field with exactly 6 elements. Can $1 \in F_6$ have order 6?
 - (f) It turns out the order of an element of a finite ring must divide the size of the ring. With this in mind, for each possible order of $1 \in F_6$, try writing out the addition and multiplication tables. When are you able to fill both tables?
 - (g) Fill in the addition and multiplication tables for a field $F_5 = \{0, 1, a, b, c\}$ with exactly 5 elements (this is tricky, but a fun challenge!). What ring(s) do you get?
- (D2) Constructing finite fields.
 - (a) Compare within your group the polynomials you found in $\mathbb{Z}_2[z]$ in problem (P2).
 - (b) For any finite field F, the set $F \setminus \{0\}$ is a *cyclic* group under multiplication (you proved this on your homework last week for $F = \mathbb{Z}_{13}$). Verify this fact for \mathbb{F}_4 (from the preliminary problems) by finding a cyclic generator (i.e. an element $a \in \mathbb{F}_4$ such that every nonzero element of \mathbb{F}_4 is a power of a).
 - (c) A nonzero element of \mathbb{F}_{p^r} is *primitive* if it generates $\mathbb{F}_{p^r} \setminus \{0\}$ as a group under multiplication. Find a primitive element in \mathbb{F}_7 , \mathbb{F}_{11} and \mathbb{F}_{41} .
 - (d) Using the methods we have developed so far, construct a finite field \mathbb{F}_9 with exactly 9 elements. Find a primitive element in $\mathbb{F}_9 \setminus \{0\}$.
 - (e) Determine which elements of \mathbb{F}_{32} are primitive. Hint: no excessive calculations needed!
- (D3) Factoring over finite fields. Let $q = p^r$ for p prime and $r \ge 1$.
 - (a) Factor the polynomial $x^5 x$ over \mathbb{F}_5 . Do the same for $x^7 x$ over \mathbb{F}_7 .
 - (b) Factor the polynomial $x^4 x$ over \mathbb{F}_4 . Hint: use a variable other than x (such as z) when writing elements of \mathbb{F}_4 .
 - (c) Formulate a conjecture for how $x^q x$ factors over \mathbb{F}_q (you don't have to prove it!).
 - (d) Factor $x^4 x$ and $x^8 x$ over \mathbb{Z}_2 . Hint: look at your answer to problem (D2) part (a).
 - (e) Factor $x^9 x$ over \mathbb{Z}_3 . Hint: find some low-degree irreducible polynomials over \mathbb{Z}_3 .
 - (f) Formulate a conjecture about how $x^{p^n} x$ factors over \mathbb{Z}_p (proof not required!).
 - (g) Factor $x^8 x$ over \mathbb{F}_4 . Does this hint at an extension of your conjecture from part (f)?

Required problems. As the name suggests, you must submit *all* required problem with this homework set in order to receive full credit.

- (R1) Factor $f(x) = x^5 + x^4 + 1$ over \mathbb{F}_2 , \mathbb{F}_4 , and \mathbb{F}_8 .
- (R2) Multiply all of the nonzero elements of \mathbb{F}_5 together. Do the same for \mathbb{F}_{11} and \mathbb{F}_4 . Find a formula for the product of all nonzero elements of \mathbb{F}_{p^r} .
- (R3) For p prime, find a formula for the number of irreducible polynomials of degree at most 3 in $\mathbb{Z}_p[x]$. You are *not* required to prove your formula holds.
- (R4) Provide a proof for either (R2) or (R3). Bonus points will be awarded if you prove both. Hint: use the theorem about how $x^q - x$ factors over \mathbb{F}_q .

Selection problems. You are required to submit all parts of *one* selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.

(S1) (a) Let a(n) denote the number of degree-*n* irreducible polynomials over \mathbb{F}_2 . Prove that

$$2^n = \sum_{d|n} d \cdot a(d).$$

Hint: use the theorem about how $x^{2^d} - x$ factors over \mathbb{F}_2 .

- (b) Find the number of irreducible polynomials over \mathbb{F}_2 with degree exactly 31.
- (c) Find the number of irreducible polynomials over \mathbb{F}_2 with degree exactly 21.
- (S2) A field F is algebraically closed if every polynomial in F[x] has a root in F. For example, \mathbb{C} is algebraically closed, but \mathbb{R} is not since $x^2 + 1$ has no roots in \mathbb{R} . Prove that no finite field \mathbb{F}_{p^r} is algebraically closed.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) By the fundamental theorem of finite fields,

$$F = \mathbb{Z}_2[z]/\langle z^3 + z + 1 \rangle$$
 and $F' = \mathbb{Z}_2[z]/\langle z^3 + z^2 + 1 \rangle$

are both fields with 8 elements and thus must be the same. Find an explicit bijection $F \to F'$ that preserves both addition and multiplication.