Winter 2018, Math 148: Week 7 Problem Set Due: Wednesday, February 28th, 2018 Block Designs

Discussion problems. The problems below should be completed in class.

(D1) Building block designs from block designs. Consider the following 12 subsets of $\{1, \ldots, 9\}$.

$\{1, 2, 3\}$	$\{1, 4, 7\}$	$\{1, 5,$	$9\}$	$\{1,$	6, 8
$\{4, 5, 6\}$	$\{2, 5, 8\}$	$\{2, 6,$	$7\}$	$\{2,$	$4, 9\}$
$\{7, 8, 9\}$	$\{3, 6, 9\}$	$\{3, 4, $	8}	$\{3,$	5, 7

- (a) For which t is the above a t-design? What are the values of v, k, r, and b in each case? Note that some of these values will be *different* for each t!
- (b) Fix $s \leq t$. We saw in lecture that any t-design (v, k, r_t) is also an s-design (v, k, r_s) for some parameter r_s . Find a formula for r_1 in terms of v, k, and r_2 .
- (c) For $t \ge 2$, find a formula for r_{t-1} in terms of v, k, r_t , and t. Start by finding a 3-design $(v, k, r_3) = (5, 3, 1)$, and compute r_2 and r_1 .
- (d) Is there an 8-design (v, k, r_8) in which $r_8 = r_7 = \cdots = r_1 = 1$?
- (e) Replace each set in the above example with its complement in $\{1, \ldots, 9\}$ (you should have 12 sets with 6 elements each). For which t does this form a t-design? These are called *complementary designs*. What are the values of v, k, r, and b in each case?
- (f) How do these values of v, k, r, and b relate to the corresponding values in part (a)? State a conjecture about complementary 2-designs. Don't worry about proving your conjecture; you will do this on your homework!

(D2) Designs from finite fields. The goal of this problem is to prove the following theorem.

Theorem. If $q = p^r$ for p prime and $r \ge 1$, there is a 2-design with $(v, k, r) = (q^2, q, 1)$.

- (a) Let's consider the case q = 3. Draw the 2-dimensional vector space \mathbb{Z}_3^2 over \mathbb{Z}_3 .
- (b) Find all lines (not necessarily containing the origin) in \mathbb{Z}_3^2 , written as sets of points. You may find it easier to shorten points from (2, 1) to simply "21" in your list.
- (c) Does this collection of sets constitute a 2-design? What are v, k, r, and b?
- (d) We now generalize the above construction from \mathbb{Z}_3 to any finite field. Suppose \mathbb{F}_q is a field with q elements, let $V = \mathbb{F}_q^2$ denote a 2-dimensional vector space over \mathbb{F}_q , and let $B_1, \ldots, B_b \subset V$ denote the set of lines in V. For these to form a 2-design $(q^2, q, 1)$,
 - (i) each block must have the same size q,
 - (ii) every element must lie in the same number of blocks, and
 - (iii) any pair of elements must occur together in exactly 1 block.

Restate each of the above requirements for B_1, \ldots, B_b in terms of geometry.

(e) The goal of the rest of this problem is to prove the geometric statements from part (d). Any line $L \subset V$ can be written uniquely as either

$$L = \{(x, y) \in V : x = b\} \quad \text{or} \quad L = \{(x, y) \in V : y = ax + b\}$$

for some $a, b \in \mathbb{F}_q$. Over the finite field $\mathbb{F}_5 = \mathbb{Z}_5$, find a and b corresponding to the lines given by span $\{(1,2)\}, (4,2) + \text{span}\{(1,2)\}, \text{ and } (1,4) + \text{span}\{(0,2)\}$ in \mathbb{F}_5^2 .

- (f) Prove that any line $L \subset V$ contains exactly q points.
- (g) Prove that any two lines with more than one point in common must be equal as sets. Hint: given distinct $(x_1, y_1), (x_2, y_2) \in L$, express a, b and c terms of x_1, y_1, x_2 and y_2 .
- (h) Find the number of lines containing each point of V (in terms of q). Hint: based on your knowledge of 2-designs, why does this follow from the other two items in part (d)?

Required problems. As the name suggests, you must submit *all* required problem with this homework set in order to receive full credit.

(R1) For each triple (v, k, r) below, construct a block design (1-design) with parameters (v, k, r), or state why no such design exists.

(a)	(v, k, r) = (7, 6, 6)	(c)	(v, k, r) = (5, 2, 1)
(b)	(v,k,r) = (6,3,1)	(d)	(v, k, r) = (9, 6, 4)

- (R2) Suppose that there exists a 5-design with parameters (v, k, r) = (12, 6, 1). Such a design is also an s-design for each $s \le 5$; find the corresponding parameters for each s. How many blocks must this design have?
- (R3) Find a 5-design with parameters (v, k, r) = (6, 5, 1), or argue that no such design exists.
- (R4) Is it possible there exists a 3-design with parameters (v, k, r) = (15, 6, 2)? What about a 4-design with parameters (v, k, r) = (11, 5, 1)?
- (R5) Find a 2-design with parameters (v, k, r) = (16, 4, 1) using the theorem in problem (D2). Hint: what field should you use, and what do the elements of that field look like?

Selection problems. You are required to submit all parts of *one* selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.

- (S1) Fix a 2-design $B_1, \ldots, B_b \subset \{1, \ldots, v\}$ with parameters (v, k, r), and let $B_i^c = \{1, \ldots, v\} \setminus B_i$ for each $i \leq b$. Prove that the blocks B_1^c, \ldots, B_b^c also form a 2-design. Is the complement of a 3-design always a 3-design?
- (S2) Prove that for any 2-design of the form (v, 3, 1), v must have the form 6n + 1 or 6n + 3 for some $n \ge 0$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Suppose \mathbb{F}_q is a finite field of size q, and let \mathbb{F}_q^3 be a 3-dimensional vector space over \mathbb{F}_q . A hyperplane $H \subset \mathbb{F}_q^3$ is a (possibly translated) 2-dimensional subspace of \mathbb{F}_q^3 . Any hyperplane can be expressed as

 $H = t + \operatorname{span}\{v, w\}$

for some $t \in \mathbb{F}_q^3$ and linearly independent $v, w \in \mathbb{F}_q^3$ (in particular, note that a hyperplane need not contain the origin).

- (a) Does the collection of all hyperplanes in \mathbb{F}_q^3 form a 3-design? Explain using geometry.
- (b) Find the number of hyperplanes in \mathbb{F}_q^3 (as a function of q). Prove your formula holds.