Math 16B, Section 3 - Winter 2018
 Instructor: Christopher O'Neill Practice Exam 1

Last Name: \qquad First Name: \qquad

Directions:

- The use of a calculator, cell phone, laptop or computer is prohibited.
- TURN OFF cell phones and put them away. If a cell phone is seen during the exam, your exam will be collected and you will receive a zero.
- Answer all of the questions, and present your solutions in the space provided. Show all your work neatly and concisely and clearly indicate your final answer. You will be graded not merely on the final answer, but on the quality and correctness of the work leading up to it.

The UC Davis Code of Academic Conduct

I will conduct myself with honesty, fairness, and integrity.

Signature: \qquad
(1) Match each function below to its graph.

$$
\begin{aligned}
f(x) & =2^{-x} \\
f(x) & =\ln (x) \\
f(x) & =\sin (x) \\
f(x) & =e^{x} \\
f(x) & =\sqrt{x}
\end{aligned}
$$

(a)

(b)

(d)

(c)

(e)
(2) Find the derivative of each of the following functions.
(a) $f(x)=\sqrt{x^{6}+2 x^{4}+3 x}$
(b) $f(x)=x \sin (x)+\cos (x)$
(c) $f(x)=x^{2} e^{3 x}$
(d) $f(x)=\ln \left(e^{x}(x-1)^{2}\right)$
(3) Chris decides to invest his life savings of $\$ 4,000$ in a savings account that yields 12% interest, compounded monthly.
(a) Find an equation for $B(t)$, the balance in Chris' account after t years.
(b) How long will Chris have to wait to have $\$ 6,000$ in his account?
(c) Chris has discovered a new bank that also offers 12% interest, but compounds continuously. Being a calculus teacher, he feels obligated to take advantage of this rare opportunity. If he invests his $\$ 4,000$ here instead, find an equation for $C(t)$, his balance after t years.
(4) Suppose 100 g of a radioactive substance decays to 95 g after 5 years.
(a) Find an equation for $R(t)$, the amount of substance remaining after t years.
(b) Find the half life of the substance.
(5) Write the following expression using only a single logarithm.

$$
\ln (x)-\ln (2 x+3)+\ln (2) \log _{2}(x)
$$

(6) Find all possible solutions for x in the following equation.

$$
\ln (x+2)-\ln (2 x+3)=0
$$

