Math 16B: Short Calculus II
Winter 2018, Section 3
Homework Sheet 3
Due: Monday, February 5, 2018

Submit your solutions to the following problems in lecture on the due date above. Present your work in a clean and organized fashion, either on a printed copy of this document (preferred) or a separate sheet of paper. As stated in the syllabus, late submissions will not be accepted.

1. Evaluate the following indefinite integrals.
(a) $\int\left(x^{3}-6 x+1+\frac{1}{x}+\sqrt{x}\right) d x=2 x^{4}-3 x^{2}+x+\ln |x|+\frac{2}{3} x^{3 / 2}+C$

$$
\begin{aligned}
& \text { (b) } \int\left(5 e^{3 x}+\sin (5 x x)+\cos (2 x)\right) d x=\frac{5}{3} e^{3 x}-\frac{1}{5} \cos (5 x)+\frac{1}{2} \sin (2 x)+C \\
& \text { check: } \frac{d}{d x}\left[\frac{5}{3} e^{3 x}-\frac{1}{5} \cos (5 x)+\frac{1}{2} \sin (2 x)\right] \\
& =\frac{5}{3} e^{3 x} \cdot 3+\frac{1}{5} \sin (5 x) \cdot 5+\frac{1}{2} \cos (2 x)-2 \\
& \text { =blue problem. } e^{3 x}+\sin (5 x)+\cos (2 x) \\
& \text { 2. Solve the following initial value problem. } \int_{\sin }(5 x)+\cos (2 x)
\end{aligned}
$$

$$
\begin{array}{ll}
f^{\prime \prime}(x)=6 x+3, \quad f^{\prime}(1)=5, & f(0)=3 \\
f^{\prime}(x)=3 x^{2}+3 x+C & f(x)=3 x^{2}+3 x-1 \\
f^{\prime}(1)=5 & f(x)=x^{3}+\frac{3}{2} x^{2}-X+C \\
s=3(1)^{2}+3(1)+C & f(0)=3 \\
C=-1 & \left.3=(0)^{3}+\frac{3}{2}(0)^{2}-10\right)+C
\end{array}
$$

3. Suppose the velocity of an accelerating car (in $\mathrm{ft} / \mathrm{sec}$) is given by the following equation.

$$
v(t)=3 t^{2}+10 t+1
$$

How far does the car travel in the first 10 seconds?

- position: $\int\left(3 t^{2}+10 t+1\right) d t=t^{3}+5 t^{2}+t+C$

$$
\begin{aligned}
& p(t)=t^{3}+S t^{2}+t+C \\
& \text { distance travel } d x=p(10)-p(0)\left.=\left((10)^{3}+S(10)^{2}+10+10\right)-(10)^{3}+5(0)^{2}+0+t\right) \\
&=1000+500+10=1510 \mathrm{ft}
\end{aligned}
$$

