Math 16B: Short Calculus II
Winter 2018, Section 3
Homework Sheet 4
Due: Monday, February 12, 2018

Submit your solutions to the following problems in lecture on the due date above. Present your work in a clean and organized fashion, either on a printed copy of this document (preferred) or a separate sheet of paper. As stated in the syllabus, late submissions will not be accepted.

1. Evaluate the following integrals.

$$
\text { (a) } \begin{aligned}
\int_{3}^{6}\left(x^{2}+2 x+1\right) d x & =\frac{1}{3} x^{3}+x^{2}+\left.x\right|_{x=3} ^{x=6} \\
& =\left(\frac{1}{3}(6)^{3}+(6)^{2}+6\right)-\left(\frac{1}{3}(3)^{3}+(3)^{2}+3\right) \\
& =(72+36+6)(-(9+9+3)=114-21=93
\end{aligned}
$$

(b) $\int_{0}^{\pi} 21 \cos (7 x) d x=\left.3 \sin (7 x)\right|_{x=0} ^{x=0}=3 \sin (7 \pi)-3 \sin (0)=0$

$$
\text { check: } \begin{aligned}
\frac{d}{d x}[3 \sin (7 x)] & =3 \cos (7 x) \cdot 7 \\
& =21 \cos (2 x)
\end{aligned}
$$

2. Consider the following integral.

$$
\int_{0}^{\pi} \sin (x) d x
$$

(a) Approximate the above integral using a miclpoint sum with $n=3$ subdivisions.

$$
\begin{aligned}
& {\left[\sin \left(\frac{r_{21}}{6}\right)\right] \cdot\left(\frac{\pi}{3}\right)+\left[\sin \left(\frac{\pi}{2}\right)\left(\frac{\pi}{3}\right)^{n}+\left[\sin \left(\frac{5 \pi}{6}\right)\left(\frac{\pi}{3}\right)\left(\frac{\pi}{3}\right)\right.\right.} \\
= & \left(\frac{1}{2}\right)\left(\frac{\pi}{3}\right) \\
= & \left.(1)\left(\frac{\pi}{3}\right)+\left(\frac{1}{2}\right)\left(\frac{\pi}{3}\right)=\frac{2 \pi}{3}\right)
\end{aligned}
$$

(b) Compare your estimate to the exact area under the curve.

$$
\begin{aligned}
\int_{0}^{\pi} \sin (x) d x & =-\cos (x)| |_{x=0}^{x=0}=(-\cos (i))-(-\cos (0))=1-(-1)=2 \\
E \text { Error } & =\left|2-\frac{2 \pi}{3}\right| .
\end{aligned}
$$

