Math 16B: Short Calculus II
Winter 2018, Section 3
Homework Sheet 8
Due: Friday, March 16, 2018

Submit your solutions to the following problems in lecture on the due date above. Present your work in a clean and organized fashion, either on a printed copy of this document (preferred) or a separate sheet of paper. As stated in the syllabus, late submissions will not be accepted.

1. Suppose you have a 4 -sided die with side labels $1,2,2$, and 4 . Consider the (discrete) random variable x that counts the number of even values that occur when rolling it twice.
(a) Identify all possible outcomes in the sample space, and find the probability of each.

$p(11)=\frac{1}{16}$	$p(21)=\frac{2}{16}$	$p(41)=1 / 16$
$p(12)=\frac{2}{16}$	$p(22)=4 / 16$	$p(42)=2 / 16$
$p(14)=\frac{1}{16}$	$p(24)=2 / 16$	$p(44)=1 / 16$

Mean: $H=(0) \underbrace{(1 / 16)}_{P(x=0)}+(1) \underbrace{(6 / 16)}_{P(x=1)}+\underbrace{(2)(9 / 16)}_{P(x-2)}=24 / 16=1.5$
variance: $V=(0-1.5)^{2} \underbrace{(1 / 16)}_{p(1=0)}+(1-1.5)^{2}(\underbrace{6 / 16)}_{P(x=1)}+(2-1.5)^{2}(9 / 16)=\underbrace{0.375}$
2. Let x be a continuous random variable with probability density function

$$
f(x)=k \sin (x)
$$

for $0 \leq x \leq \pi$.
(a) Find a value of k so that f is a probability density function.

$$
\begin{aligned}
& \text { Find a value of } k \text { so that } f \text { is a probability density function. } \\
& \int_{0}^{\pi=\pi} k \sin (x) d x=-k \cos (x)=(-k(-1))-(-k(1))=2 k=1 \\
& k=\frac{1}{2} \quad f(x)=\frac{1}{2} \sin (x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) Find the expected value (i.e. mean) and median of } f \\
& \text { Mean: } \mu=\int_{0}^{\pi} x\left(\frac{1}{2} \sin (x)\right) d x=-\frac{1}{2} x \cos (x)-\int_{0}^{H}-\frac{1}{2} \cos (x) d x=-\frac{1}{2} x \cos (x)+\left.\frac{1}{2} \sin (x)\right|_{0} ^{\pi}
\end{aligned}
$$

(b) Find the expected value (i.e. mean) and median of f.

$$
u=x \quad v=-\frac{1}{2} \cos (x) \quad=\left[-\frac{1}{2} r \cos (-1)+\frac{1}{2}(0)\right]-\left[-\frac{1}{2}(0)(1)+\frac{1}{2}(0)\right]
$$

$$
d u=d x \quad d v=\frac{1}{2} \sin (x) d x
$$

$$
\text { median: Find }|0| 0 \int_{0}^{|x|} \frac{1}{2} \sin (x) d x=\frac{1}{2}
$$

$$
=\frac{\pi}{2}
$$

$$
\begin{aligned}
\int_{0}^{\mid n} \frac{1}{2} \sin (x) d x=-\left.\frac{1}{2} \cos (x)\right|_{0} ^{14}= & {\left[-\frac{1}{2} \cos (10)\right]-\left[\frac{1}{2} \cos (0)\right]=\frac{1}{2} } \\
& -\frac{1}{2} \cos (m)+\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

1

$$
\begin{gathered}
-\frac{1}{2} \cos (M)+\frac{1}{2}=\frac{1}{2} \\
\cos (M)=0 \quad M=M \\
m
\end{gathered}
$$

